- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Hasanzadeh, Mahdi (4)
-
Patooghy, Ahmad (4)
-
Abdelrehim, Mostafa (1)
-
Abdollahi, Meisam (1)
-
Badawy, Abdel-Hameed A (1)
-
Baniasadi, Amirali (1)
-
Favorov, Oleg V (1)
-
Green, Jason (1)
-
Kursun, Olcay (1)
-
Sarihi, Amin (1)
-
Sarrafzadeh, Abdolhossein (1)
-
Sarsekeyev, Beiimbet (1)
-
Taheri, Ebad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 23, 2026
-
Hasanzadeh, Mahdi; Abdollahi, Meisam; Baniasadi, Amirali; Patooghy, Ahmad (, IEEE)
-
Kursun, Olcay; Sarsekeyev, Beiimbet; Hasanzadeh, Mahdi; Patooghy, Ahmad; Favorov, Oleg V (, IEEE)
-
Patooghy, Ahmad; Hasanzadeh, Mahdi; Sarihi, Amin; Abdelrehim, Mostafa; Badawy, Abdel-Hameed A (, ACM Journal on Emerging Technologies in Computing Systems)Network-on-chip (NoC) is widely used as an efficient communication architecture in multi-core and many-core System-on-chips (SoCs). However, the shared communication resources in an NoC platform, e.g., channels, buffers, and routers, might be used to conduct attacks compromising the security of NoC-based SoCs. Most of the proposed encryption-based protection methods in the literature require leaving some parts of the packet unencrypted to allow the routers to process/forward packets accordingly. This reveals the source/destination information of the packet to malicious routers, which can be exploited in various attacks. For the first time, we propose the idea of secure, anonymous routing with minimal hardware overhead to encrypt the entire packet while exchanging secure information over the network. We have designed and implemented a new NoC architecture that works with encrypted addresses. The proposed method can manage malicious and benign failures at NoC channels and buffers by bypassing failed components with a situation-driven stochastic path diversification approach. Hardware evaluations show that the proposed security solution combats the security threats at the affordable cost of 1.5% area and 20% power overheads chip-wide.more » « less
An official website of the United States government
